Numerical Simulation of Magnetohydrodynamic (MHD) Fluid Flow Over A Stretching Surface

Main Article Content

Mehul Tithlia

Abstract

An incompressible electrically conducting fluid's constant two-dimensional magnetohydrodynamic (MHD) boundary layer flow across a continuously extended surface is numerically examined in great depth in this study. These flows are often used in applications such as molding polymers, rolling metal, making glass fiber, cooling stretched sheets, and MHD-based flow control devices. When a transverse magnetic field is applied, Lorentz forces are exerted, and momentum transfer in the boundary layer is drastically altered. In this research, the momentum and mass conservation nonlinear partial differential equations are expressed in terms of boundary layer approximations, and then, by use of similarity transformations, they are reduced to a set of nonlinear ordinary differential equations. A fourth-order Runge Kutta method is used numerically to solve these modified equations by a shooting strategy. The effect of important physical factors, such stretching and magnetic ones, on the velocity distribution and thickness of the boundary layer is studied in detail. Important insights into MHD flow control mechanisms are provided by the quantitative results, which demonstrate that the extension surface increases the near-wall velocity and the working magnetic field inhibits fluid flow.

Article Details

How to Cite
Mehul Tithlia. (2025). Numerical Simulation of Magnetohydrodynamic (MHD) Fluid Flow Over A Stretching Surface. International Journal of Advanced Research and Multidisciplinary Trends (IJARMT), 2(1), 981–991. Retrieved from https://ijarmt.com/index.php/j/article/view/614
Section
Articles

References

Shahzad, F., Sagheer, M., & Hussain, S. (2018). Numerical simulation of magnetohydrodynamic Jeffrey nanofluid flow and heat transfer over a stretching sheet considering Joule heating and viscous dissipation. AIP Advances, 8(6).

Ullah, H., Hayat, T., Ahmad, S., Alhodaly, M. S., & Momani, S. (2021). Numerical simulation of MHD hybrid nanofluid flow by a stretchable surface. Chinese Journal of Physics, 71, 597-609.

Khan, M. R., Puneeth, V., Alaoui, M. K., & Almagrabi, A. O. (2024). Numerical simulation of unsteady MHD bio-convective flow of viscous nanofluid through a stretching surface. Case Studies in Thermal Engineering, 53, 103830.

Dawar, A., Saeed, A., Shah, Z., Kumam, W., Islam, S., & Kumam, P. (2021). Analytical simulation for magnetohydrodynamic maxwell fluid flow past an exponentially stretching surface with first-order velocity slip condition. Coatings, 11(8), 1009.

Ziaei-Rad, M., Saeedan, M., & Afshari, E. (2016). Simulation and prediction of MHD dissipative nanofluid flow on a permeable stretching surface using artificial neural network. Applied Thermal Engineering, 99, 373-382.

Reddy, P. B., Suneetha, S., & Reddy, N. B. (2017). Numerical study of magnetohydrodynamics (MHD) boundary layer slip flow of a Maxwell nanofluid over an exponentially stretching surface with convective boundary condition. Propulsion and Power Research, 6(4), 259-268.

Rashid, A., Ayaz, M., & Islam, S. (2023). Numerical investigation of the magnetohydrodynamic hybrid nanofluid flow over a stretching surface with mixed convection: A case of strong suction. Advances in Mechanical Engineering, 15(6), 16878132231179616.

Irshad, S., Majeed, A. H., Jahan, S., Riaz, A., Eldin, S. M., & Shahzad, H. (2023). Numerical simulations of MHD generalized Newtonian fluid flow effects on a stretching sheet in the presence of permeable media: A finite difference-based study. Frontiers in Physics, 11, 1121954.

Hayat, T., Khan, M. I., Tamoor, M., Waqas, M., & Alsaedi, A. (2017). Numerical simulation of heat transfer in MHD stagnation point flow of Cross fluid model towards a stretched surface. Results in physics, 7, 1824-1827.

Khan, M. I., Waqas, M., Hayat, T., & Al-Saedi, A. (2018). Magneto-hydrodynamical numerical simulation of heat transfer in MHD stagnation point flow of Cross fluid model towards a stretched surface. Physics and Chemistry of Liquids, 56(5), 584-595.

Alkaoud, A., Khader, M. M., Eid, A., & Megahed, A. M. (2024). Numerical simulation of the flow of a tangent hyperbolic fluid over a stretching sheet within a porous medium, accounting for slip conditions. Heliyon, 10(8).

Ahmed, K., & Akbar, T. (2021). Numerical investigation of magnetohydrodynamics Williamson nanofluid flow over an exponentially stretching surface. Advances in Mechanical Engineering, 13(5), 16878140211019875.

Reza-E-Rabbi, S., Khan, M. S., Arifuzzaman, S. M., Islam, S., Biswas, P., Rana, B. M. J., ... & Ahmmed, S. F. (2022). Numerical simulation of a non-linear nanofluidic model to characterise the MHD chemically reactive flow past an inclined stretching surface. Partial Differential Equations in Applied Mathematics, 5, 100332.

Prasannakumara, B. C. (2021). Numerical simulation of heat transport in Maxwell nanofluid flow over a stretching sheet considering magnetic dipole effect. Partial Differential Equations in Applied Mathematics, 4, 100064.

Makinde, O. D., Khan, Z. H., Ahmad, R., & Khan, W. A. (2018). Numerical study of unsteady hydromagnetic radiating fluid flow past a slippery stretching sheet embedded in a porous medium. Physics of Fluids, 30(8).

Akbar, N. S., Beg, O. A., & Khan, Z. H. (2017). Magneto-nanofluid flow with heat transfer past a stretching surface for the new heat flux model using numerical approach. International Journal of Numerical Methods for Heat & Fluid Flow, 27(6), 1215-1230.

Sadiq Murad, M. A., & Hamasalh, F. K. (2023). Numerical study for fractional-order magnetohydrodynamic boundary layer fluid flow over stretching sheet. Punjab University Journal of Mathematics, 55(2).

Mahanthesh, B., Gireesha, B. J., Gorla, R. S., & Makinde, O. D. (2018). Magnetohydrodynamic three-dimensional flow of nanofluids with slip and thermal radiation over a nonlinear stretching sheet: a numerical study. Neural Computing and Applications, 30(5), 1557-1567.

Wahid, N. S., Hafidzuddin, M. E. H., Arifin, N. M., Turkyilmazoglu, M., & Abd Rahmin, N. A. (2020). Magnetohydrodynamic (MHD) slip darcy flow of viscoelastic fluid over a stretching sheet and heat transfer with thermal radiation and viscous dissipation. CFD Letters, 12(1), 1-12.

Shoaib, M., Raja, M. A. Z., Sabir, M. T., Islam, S., Shah, Z., Kumam, P., & Alrabaiah, H. (2020). Numerical investigation for rotating flow of MHD hybrid nanofluid with thermal radiation over a stretching sheet. Scientific Reports, 10(1), 18533.

Agarwal, V., Singh, B., & Nisar, K. S. (2022). Numerical analysis of heat transfer in magnetohydrodynamic micropolar jeffery fluid flow through porous medium over a stretching sheet with thermal radiation. Journal of Thermal Analysis and Calorimetry, 147(17), 9829-9851.

Haq, R. U., Nadeem, S., Khan, Z. H., & Noor, N. F. M. (2015). Convective heat transfer in MHD slip flow over a stretching surface in the presence of carbon nanotubes. Physica B: condensed matter, 457, 40-47.

Al-Mamun, A., Arifuzzaman, S. M., Reza-E-Rabbi, S., Alam, U. S., Islam, S., & Khan, M. S. (2021). Numerical simulation of periodic MHD casson nanofluid flow through porous stretching sheet. SN Applied Sciences, 3(2), 271.

Arif, M. S., Jhangir, M., Nawaz, Y., Abbas, I., Abodayeh, K., & Ejaz, A. (2022). Numerical study for magnetohydrodynamic (MHD) unsteady maxwell nanofluid flow impinging on heated stretching sheet. Computer Modeling in Engineering & Sciences, 133(2), 303-325.

Pattnaik, P. K., Mishra, S. R., Barik, A. K., & Mishra, A. K. (2020). Influence of chemical reaction on magnetohydrodynamic flow over an exponential stretching sheet: a numerical study. International Journal of Fluid Mechanics Research, 47(3).

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.