

## **Chatbot Trust Dynamics in E-Commerce: Understanding Consumer Perceptions and Behavioral Intentions**

**Dr. Pradeep S. Ohol**

Academic Coordinator, School of Commerce & Management Yashwantrao Chavan  
Maharashtra Open University, Nashik

**Dr. Prashant V. Tope**

Academic Coordinator, School of Commerce & Management Yashwantrao Chavan  
Maharashtra Open University, Nashik

**Dr. Archana M. Pandagale**

Academic Coordinator, School of Commerce & Management Yashwantrao Chavan  
Maharashtra Open University, Nashik

### **Abstract**

This research paper explores the pivotal role of trust in shaping consumer interactions with AI-powered chatbots in the rapidly growing e-commerce sector, with a specific focus on urban regions of Nashik and Mumbai. Drawing upon established theoretical models such as the Technology Acceptance Model (TAM), Trust Theory in Human-Computer Interaction (HCI), and the Computers Are Social Actors (CASA) paradigm, the study examines how user perceptions of chatbot features influence trust formation. A structured quantitative survey of 210 e-commerce users was conducted, analyzing critical factors such as perceived accuracy, anthropomorphism, responsiveness, and privacy concerns. Findings from correlation and multiple regression analysis reveal that perceived accuracy and human-like characteristics significantly enhance user trust, which in turn positively influences purchase intention and consumer satisfaction. The study contributes to both academic literature and practical applications by recommending actionable strategies for enhancing chatbot design and fostering trust in digital customer service systems. These insights are particularly relevant for businesses aiming to improve customer experience, engagement, and conversion rates through intelligent conversational agents.

**Keywords:** Chatbot Trust, E-Commerce, Anthropomorphism, Perceived Accuracy, TAM, CASA, Consumer Behavior, Human-Computer Interaction, AI in Retail, Urban India, Purchase Intention, Chatbot Design, Customer Engagement

### **1. Introduction**

The rapid digital transformation of commerce in the 21st century has led to the proliferation of artificial intelligence (AI)-driven solutions, particularly in the realm of customer engagement and service delivery. Among the most widely adopted AI applications are chatbots—automated conversational agents designed to simulate human interaction and assist users in navigating complex tasks such as product selection, payment processes, and issue resolution. As businesses strive to offer 24/7 assistance, scale support operations, and personalize customer journeys, chatbots have become a cornerstone of e-commerce platforms.

Despite their growing capabilities and widespread adoption, chatbots face a critical barrier to effectiveness: gaining and sustaining consumer trust. Unlike human agents, chatbots lack emotional cues, contextual judgment, and cultural sensitivity—factors that significantly

influence interpersonal trust in traditional commerce. The absence of human touch introduces skepticism in users, particularly when interactions involve high-stakes decisions such as financial transactions, personal data sharing, or post-sale support.

This study investigates the dynamics of trust in chatbot-customer interactions, specifically in the urban regions of Nashik and Mumbai—two prominent commercial hubs in Maharashtra, India. These cities represent digitally savvy consumer segments with increasing reliance on e-commerce platforms for daily and discretionary purchases. Trust, in this context, is not merely an abstract concept but a measurable construct influenced by multiple factors, including chatbot design, communication style, perceived competence, accuracy, responsiveness, and data security protocols.

The research aims to understand how chatbot features contribute to or detract from trust formation, and how this trust influences consumer behavioral intentions, such as purchase decisions, customer satisfaction, and willingness to reuse or recommend the service. By drawing on theoretical frameworks such as the Technology Acceptance Model (TAM), Trust Theory in Human-Computer Interaction (HCI), and the Computers Are Social Actors (CASA) paradigm, this paper provides both a conceptual and empirical analysis of trust-building in AI-mediated e-commerce environments.

Furthermore, this study seeks to fill existing research gaps by offering region-specific insights into trust perceptions and behavioral patterns, thereby contributing to the growing discourse on AI ethics, user experience (UX), and digital consumer psychology. The findings will help e-commerce businesses optimize chatbot design and functionality to foster deeper trust and engagement among users.

## 2. Literature Review

The concept of trust in online systems has been extensively explored across domains, including information systems, human-computer interaction, and consumer psychology. In particular, it serves as a fundamental mechanism that facilitates technology adoption **and** reduces perceived risks associated with virtual transactions.

One of the foundational models in this area is the Technology Acceptance Model (TAM) developed by Davis (1989), which identifies perceived usefulness and perceived ease of use as key drivers of user acceptance. This model has since been expanded and validated across various digital platforms. However, in the context of chatbots, these dimensions are further influenced by conversational design, emotional intelligence, and perceived human-likeness.

Another critical theoretical foundation is the Computers Are Social Actors (CASA) framework proposed by **Sundar et al.**, which argues that users subconsciously anthropomorphize computers and digital agents. As a result, users may apply social rules and expectations—originally meant for human interactions—to their experiences with chatbots. This leads to an expectation of politeness, empathy, and competence, which can become a double-edged sword when the chatbot fails to meet those standards.

In the e-commerce landscape, trust plays a dual role—first, as an enabler of user engagement and second, as a risk mitigator in online purchasing decisions. According to **Gefen et al.**

(2003), trust reduces consumer anxiety and promotes long-term relationships in digital marketplaces. Particularly in AI-driven chatbot interactions, trust substitutes for human presence, making it indispensable for transaction continuity and customer retention.

A more recent study by **Luger and Sellen (2016)** identified a frequent mismatch between user expectations and actual chatbot performance, especially in unstructured or emotionally nuanced queries. This performance-expectation gap often leads to erosion of trust, frustration, and abandonment of the platform.

While global literature provides robust models, there is a notable gap in region-specific research, particularly within the Indian e-commerce context. India presents a unique blend of technological optimism and skepticism, largely influenced by digital literacy, language diversity, cultural expectations, and prior exposure to service quality. For instance, **Patil et al. (2021)** observed that Indian users are more likely to trust chatbots that provide localized content, use culturally relevant language, and offer quick escalation to human agents. Additionally, privacy concerns have emerged as a significant trust barrier due to high-profile data breaches and rising awareness about data security.

In Tier-2 and Tier-3 cities like Nashik, consumers are in a transitional phase—becoming digitally fluent yet retaining a preference for interpersonal service. In contrast, metro areas like Mumbai show higher openness to automation but also exhibit higher service expectations. Despite being part of the same state (Maharashtra), these cities demonstrate distinct patterns of chatbot trust formation, underscoring the need for empirical validation of global models in regional contexts.

Given the heterogeneity of the Indian consumer base, a one-size-fits-all approach to chatbot design and trust-building may not yield optimal results. Therefore, this research attempts to bridge the gap by studying the influencing factors of chatbot trust specifically within Nashik and Mumbai, offering both theoretical validation and practical insight for e-commerce practitioners operating in India.

### 3. Research Objectives and Hypotheses

The study aims to:

1. Identify factors influencing trust in e-commerce chatbots among users in Nashik and Mumbai.
2. Examine the relationship between chatbot trust and consumer behavioral intentions.

Based on the literature, the following hypotheses were formulated:

**H1:** Perceived accuracy of chatbots significantly influences consumer trust.

**H2:** Human-like traits in chatbots enhance trust more than robotic interactions.

### 4. Theoretical Framework

To understand how users build trust in chatbots, we rely on three major theoretical models: the Technology Acceptance Model (TAM), Trust Theory in Human-Computer Interaction (HCI), and the CASA (Computers Are Social Actors) Framework. Each of these models helps explain different dimensions of user behavior and expectations when interacting with AI-driven systems in e-commerce.

#### **4.1 Technology Acceptance Model (TAM)**

Proposed by **Davis (1989)**, TAM is widely used to explain how users come to accept and use a new technology. According to this model, two main factors influence user decisions:

- **Perceived Usefulness:** How well the chatbot helps the user achieve their goals (e.g., finding a product or resolving a query).
- **Perceived Ease of Use:** How simple and intuitive it is to interact with the chatbot.

In the context of e-commerce chatbots, a user is more likely to trust and continue using the bot if it quickly provides accurate product suggestions, solves issues without hassle, and uses a clear, user-friendly interface. If the chatbot appears confusing or unhelpful, users will lose trust and abandon it—regardless of how advanced the underlying AI may be.

For example, a customer in Mumbai looking for a refund will appreciate a chatbot that clearly explains the steps, provides links, and responds swiftly—thus enhancing perceived usefulness and ease of use.

#### **4.2 Trust Theory in HCI (Human-Computer Interaction)**

This theory focuses on how users evaluate the trustworthiness of digital systems. Trust in chatbots is built on three key pillars:

- **Ability:** Can the chatbot complete the task effectively? This includes accuracy in information, quick response time, and problem-solving ability.
- **Benevolence:** Does the chatbot appear to care about the user's concerns? Empathetic responses such as "I'm here to help" or "I understand your issue" increase emotional trust.
- **Integrity:** Is the chatbot honest, consistent, and transparent? If the chatbot hides limitations or gives inconsistent answers, users may lose trust.

In India, where digital trust is still developing, these elements are crucial. For instance, a user from Nashik encountering a chatbot for the first time will feel more confident if the bot clearly identifies itself, provides reliable information, and handles errors respectfully.

#### **4.3 CASA (Computers Are Social Actors) Framework**

This framework, developed by Nass and Reeves, argues that people treat computers and digital agents as if they were social beings. In other words, users naturally apply human social rules to chatbot interactions—even if they know it's just a machine.

In chatbot design, human-like features such as:

- Using a human name ("Hi, I'm Maya, your shopping assistant"),
- Expressing emotions ("I'm glad I could help!"),
- Using a friendly tone or emojis, and
- Having a visual avatar or voice,

can make users feel more connected and emotionally engaged. This emotional connection is especially important in building first impressions and long-term loyalty.

In e-commerce, users are more likely to trust and return to a chatbot that feels relatable and respectful, especially in regions like Nashik and Mumbai, where service expectations are culturally influenced by politeness, warmth, and personal attention.

## 5. Methodology

This research adopts a descriptive quantitative approach to explore the relationship between trust and user interaction with chatbots in the e-commerce environment, with a regional focus on Nashik and Mumbai. The objective is to quantify user perceptions, behavioral patterns, and levels of trust in AI-driven chatbots, using structured, empirical data.

### 5.1 Research Design

The study employs a cross-sectional survey design, suitable for capturing data at a single point in time. This method allows for statistical analysis of multiple variables, including user demographics, chatbot usage frequency, perceived trustworthiness, and behavioral intentions (e.g., purchase decisions).

### 5.2 Sampling and Participants

A total of 210 participants were surveyed. The sample was composed of individuals residing in urban areas of Nashik and Mumbai, two cities representing diverse but digitally active consumer bases in Maharashtra, India.

- **Sampling Technique:** A purposive sampling method was used to target only those individuals who had interacted with e-commerce chatbots in the past 6 months.
- **Inclusion Criteria:**
  - Aged between 18–45 years
  - Regular users of e-commerce platforms like Amazon, Flipkart, Myntra, or Meesho
  - Prior experience interacting with chatbots (for product queries, complaints, returns, etc.)

### 5.3 Data Collection Tool

Data was collected using a structured questionnaire, developed based on validated constructs from prior studies in trust, TAM, and HCI literature. The questionnaire consisted of three main sections:

#### 1. Demographic Information

- Age, Gender, Education, Occupation, and City

#### 2. Chatbot Interaction History

- Frequency of chatbot use, preferred platforms, types of issues resolved via chatbot

#### 3. Trust Measurement Statements

- A series of Likert-scale items (5-point scale: 1 = Strongly Disagree to 5 = Strongly Agree) measuring:
  - Perceived accuracy
  - Helpfulness
  - Emotional tone (anthropomorphism)
  - Privacy concern
  - Overall trust and satisfaction

#### **5.4 Reliability and Validity**

To ensure internal consistency, the Cronbach's Alpha test was used to evaluate the reliability of multi-item scales. The alpha value for the overall trust scale was 0.84, indicating good reliability (a value above 0.7 is considered acceptable).

Content validity was ensured through expert review and pilot testing with 15 users from the target demographic, whose feedback helped refine the clarity and relevance of the questionnaire items.

#### **5.5 Statistical Tools and Analysis**

Data was coded and analyzed using IBM SPSS Statistics 26. The following statistical methods were applied:

- **Descriptive Statistics:** Frequencies, percentages, means, and standard deviations for all variables.
- **Inferential Statistics:**
  - **Pearson's Correlation:** To examine relationships between perceived accuracy, anthropomorphism, and trust.
  - **Multiple Linear Regression:** To test whether perceived accuracy and anthropomorphic traits significantly predict trust levels.
- **Reliability Testing:** Cronbach's Alpha values were reported for key constructs.

#### **6. Data Analysis and Results**

This section presents the results of the statistical analyses conducted on the data collected from 210 participants from Nashik and Mumbai. The analyses include descriptive statistics, reliability testing, correlation analysis, and regression modeling. All analyses were performed using IBM SPSS Statistics Version 26.

##### **6.1 Demographic Profile of Respondents**

A total of 210 valid responses were analyzed. The demographic breakdown is summarized below:

| <b>Demographic Variable</b> | <b>Category</b>      | <b>Percentage</b> |
|-----------------------------|----------------------|-------------------|
| Gender                      | Male                 | 52%               |
|                             | Female               | 48%               |
| Age                         | 18–25                | 44%               |
|                             | 26–35                | 37%               |
|                             | 36–45                | 19%               |
| Location                    | Nashik               | 51%               |
|                             | Mumbai               | 49%               |
| E-commerce Usage            | Daily/Weekly         | 66%               |
|                             | Monthly/Occasionally | 34%               |

**Interpretation:** The sample represents a balanced gender distribution, with a majority in the 18–35 age group suggesting that young, digitally active users are primary chatbot users in e-commerce contexts.

## 6.2 Reliability Analysis

To evaluate internal consistency of the trust scale, **Cronbach's Alpha** was computed.

| Construct                     | Number of Items | Cronbach's Alpha |
|-------------------------------|-----------------|------------------|
| Trust in Chatbots             | 5               | 0.84             |
| Perceived Accuracy            | 4               | 0.81             |
| Anthropomorphism (Human-like) | 4               | 0.83             |

**Interpretation:** All scales exhibited high reliability ( $\alpha > 0.80$ ), indicating strong internal consistency among the items used to measure each construct.

## 6.3 Descriptive Statistics

Mean scores of key constructs were computed:

| Variable           | Mean (M) | Standard Deviation (SD) |
|--------------------|----------|-------------------------|
| Trust in Chatbots  | 4.12     | 0.67                    |
| Perceived Accuracy | 4.25     | 0.59                    |
| Anthropomorphism   | 3.97     | 0.74                    |

**Interpretation:** Respondents generally agreed that chatbot responses were accurate and trustworthy. Human-like characteristics also received favorable perceptions.

## 6.4 Correlation Analysis

A Pearson correlation test was conducted to identify associations between variables.

| Variables          | Trust in Chatbots     |
|--------------------|-----------------------|
| Perceived Accuracy | $r = 0.71 (p < 0.01)$ |
| Anthropomorphism   | $r = 0.65 (p < 0.01)$ |

**Interpretation:** There is a strong and statistically significant correlation between both predictor variables (accuracy and anthropomorphism) and trust. Accuracy, in particular, has the strongest positive relationship with chatbot trust.

## 6.5 Regression Analysis

A multiple linear regression analysis was conducted to examine how perceived accuracy and anthropomorphic design features predict trust in chatbots.

- **Dependent Variable:** Trust in Chatbots
- **Independent Variables:** Perceived Accuracy, Anthropomorphism

| Model Summary      | R    | R <sup>2</sup> | Adjusted R <sup>2</sup> | F-value | Sig.     |
|--------------------|------|----------------|-------------------------|---------|----------|
| Regression Model   | 0.79 | 0.62           | 0.61                    | 91.44   | 0.000*** |
| Coefficients       | B    | Std. Error     | Beta                    | t       | Sig.     |
| (Constant)         | 1.10 | 0.21           | -                       | 5.24    | 0.000    |
| Perceived Accuracy | 0.52 | 0.07           | 0.53                    | 7.43    | 0.000*** |
| Anthropomorphism   | 0.39 | 0.06           | 0.44                    | 6.18    | 0.000*** |

\*\*\* $p < 0.001$

### **Interpretation:**

- The model explains 62% of the variance ( $R^2 = 0.62$  in trust levels).
- Both predictors significantly contribute to trust formation.
- **Perceived accuracy** has a higher influence ( $\beta = 0.53$ ) than anthropomorphism ( $\beta = 0.44$ ), suggesting users place more importance on how accurate and helpful the chatbot is than its human-like traits.

### **6.6 Summary of Findings**

- Trust in chatbots is significantly predicted by perceived accuracy and anthropomorphic features.
- Younger users (18–35) reported higher trust levels.
- Respondents from Mumbai showed slightly higher trust than those from Nashik, possibly due to greater exposure to digital interfaces.

## **7. Findings**

The data collected from 210 e-commerce users (Nashik: 100; Mumbai: 110) offers key insights into how chatbot trust operates within an urban Indian context:

### **1. High Trust in Functional Accuracy:**

- 71% of respondents agreed that chatbots gave accurate and relevant information.
- Correlation coefficient ( $r = 0.71$ ,  $p < 0.01$ ) confirms a strong relationship between **accuracy** and **trust**.

### **2. Influence of Human-like Characteristics:**

- 65% of users reported higher trust in bots that used human-like names, tones, or emojis.
- Anthropomorphism showed a strong positive correlation with trust ( $r = 0.65$ ,  $p < 0.01$ ).

### **3. Age-Based Variations:**

- Users aged **18–25** showed the highest mean trust score (4.25/5), followed by 26–35 (4.10) and 36–45 (3.85).
- Younger users are more comfortable trusting AI-based interfaces.

### **4. Regression Analysis:**

- A multiple regression model predicted 62% of the variance in trust ( $R^2 = 0.62$ ), confirming perceived accuracy and anthropomorphism as significant predictors.

### **5. Privacy Concerns Exist:**

- 42% of participants expressed hesitance in sharing personal data with chatbots, especially for payment-related queries.

## **8. Suggestions**

Based on the findings, the following recommendations can be made for e-commerce platforms deploying chatbots:

### **1. Enhance Perceived Accuracy:**

- Improve chatbot algorithms to ensure context-aware, accurate responses.
- Train models on region-specific queries and product categories.

**2. Use Anthropomorphic Design Wisely:**

- Employ friendly, conversational tones and visual elements like avatars to foster familiarity.
- Avoid overuse of emotional mimicry, which may appear manipulative to older users.

**3. Segment Chatbot Features by User Demographics:**

- Offer customization options (e.g., tone, pace, interface design) based on user age or prior behavior.

**4. Transparency in Data Handling:**

- Make privacy policies more visible during chatbot interactions.
- Use visible disclaimers when bots handle sensitive data.

**5. Fallback Human Support:**

- Integrate seamless escalation to human agents when the chatbot is unable to satisfy the query.
- This improves trust and prevents frustration.

**9. Conclusion**

This study confirms that trust is a central determinant of user interaction with chatbots in e-commerce, particularly in the Indian urban context of Nashik and Mumbai. Perceived accuracy and anthropomorphic traits significantly influence trust, which in turn affects user satisfaction and purchase intent.

The research also underlines demographic nuances, where younger users exhibit higher trust in chatbot interfaces. Privacy concerns persist, suggesting that businesses must enhance transparency and fallback mechanisms to maintain user confidence.

Ultimately, to build sustainable consumer relationships, e-commerce platforms must not only invest in smarter chatbots but also focus on emotional design, regional relevance, and ethical AI communication practices. Future research can explore longitudinal trust development, sector-specific trust differences, or regional language chatbot deployment.

**References**

1. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. *MIS Quarterly*, 13(3), 319–340. <https://doi.org/10.2307/249008>
2. Luger, E., & Sellen, A. (2016). “Like having a really bad PA”: The gulf between user expectation and experience of conversational agents. In *Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems* (pp. 5286–5297). ACM. <https://doi.org/10.1145/2858036.2858288>
3. McKnight, D. H., Choudhury, V., & Kacmar, C. (2002). Developing and validating trust measures for e-commerce: An integrative typology. *Information Systems Research*, 13(3), 334–359. <https://doi.org/10.1287/isre.13.3.334.81>
4. Sundar, S. S., Waddell, T. F., & Jung, E. H. (2017). The CASA paradigm: Exploring the anthropomorphization of computers. *Communication and Technology*, 2(1), 50–78.
5. Dr. Pradeep Ohol, Dr. Sourabh Ambewadikar, Dr. Archana Pandagale, "IMPACT OF WOMEN LEADERSHIP IN ORGANIZATIONS", IJRAR - International Journal of

Research and Analytical Reviews (IJRAR), E-ISSN 2348-1269, P- ISSN 2349-5138, Volume.11, Issue 2, Page No pp.389-392, May 2024

6. Sharma, A., & Singh, V. (2020). Understanding Indian consumer behavior towards chatbot-enabled shopping: A study of Tier-2 cities. *Journal of Business and Retail Management Research*, 14(4), 92–102.
7. Iyer, M., & Sharma, R. (2021). Trust and AI: A study of chatbot adoption in Indian e-commerce platforms. *International Journal of Management (IJM)*, 12(7), 1125–1137.
8. Sinha, A. (2019). Role of artificial intelligence in Indian e-retailing sector: Opportunities and challenges. *Indian Journal of Marketing*, 49(10), 41–54.
9. Dr. Archana Pandagale, Dr Pradeep Ohol, Dr Sourabh Ambewadikar, "ARTIFICIAL INTELLIGENCE IN COMMERCE", IJRAR - International Journal of Research and Analytical Reviews (IJRAR), E-ISSN 2348-1269, P- ISSN 2349-5138, Volume.11, Issue 4, Page No pp.414-420, December 2024
10. Kumar, R., & Dey, S. (2022). Trust, usability and customer satisfaction in conversational commerce: An empirical study in Maharashtra. *South Asian Journal of Business and Management Cases*, 11(1), 29–39. <https://doi.org/10.1177/22779779211058134>