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Abstract 

Matrix multiplication is a fundamental operation in various scientific computations, image 

processing, and particularly in deep learning applications where it forms the backbone of 

convolutional and fully connected layers. The growing demand for real-time processing in 

artificial intelligence (AI) and machine learning systems necessitates highly efficient hardware 

implementations. This paper presents VLSI architecture for pipelined and parallel array-based 

matrix multiplication optimized for deep learning techniques. The proposed design leverages 

pipelining to enhance throughput and reduce latency, while parallel array structures ensure 

efficient handling of large-scale matrix operations with minimized computational delay. By 

adopting deep learning-driven optimization strategies, the architecture achieves improvements 

in area utilization, delay, and power efficiency compared to conventional multiplier-based 

designs. Simulation and synthesis results validate the effectiveness of the proposed approach, 

demonstrating its suitability for high-performance computing platforms, neural network 

accelerators, and embedded AI systems. 

In this paper, we have proposed MM using deep learning approach. This design reduced 

hardware complexity, delay and input/output data format to match different application needs. 

The PPI-MO based MM is design Xilinx software and simulated number of slice, look up table 

and delay.  
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1. INTRODUCTION 

Matrix multiplication is a fundamental mathematical operation extensively used in scientific 

computing, digital signal processing (DSP), image processing, and most prominently, in deep 
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learning applications. In neural networks, especially in convolutional and fully connected 

layers, a significant portion of the computational workload arises from large-scale matrix 

multiplications. With the growing adoption of artificial intelligence (AI) in domains such as 

computer vision, natural language processing, and healthcare, the need for efficient hardware 

implementations of matrix multiplication has become increasingly critical. Traditional 

software-based implementations running on general-purpose processors are often inadequate 

due to high computational complexity, latency, and power consumption. Hence, hardware 

accelerators using Very Large Scale Integration (VLSI) architectures are being explored as an 

effective solution to address these challenges. 

The demand for real-time processing in deep learning tasks requires architectures that can 

balance high throughput, reduced latency, low area, and power efficiency. VLSI architectures 

provide an opportunity to design specialized hardware for matrix multiplication that can 

outperform conventional processors and graphics processing units (GPUs) in terms of 

performance-per-watt and scalability. Among the existing approaches, pipelined and parallel 

array architectures have emerged as promising solutions. Pipelining enhances throughput by 

overlapping computations, thereby ensuring continuous data flow across stages, while parallel 

array structures allow multiple operations to be carried out simultaneously. The combination 

of these two design strategies enables highly efficient computation of large matrices, which is 

essential for deep learning applications. 

Conventional multiplier-based matrix multipliers suffer from high area consumption and 

increased propagation delays as the matrix size grows. To overcome these limitations, 

optimized VLSI architectures focus on reducing the number of arithmetic units, sharing 

computations, and efficiently utilizing interconnections. The pipelined approach ensures 

minimal idle cycles during computation, while parallel array multipliers are designed to exploit 

data-level parallelism inherent in deep learning workloads. These optimizations make the 

architecture suitable for applications ranging from edge AI devices to large-scale cloud-based 

accelerators. 

Furthermore, deep learning techniques themselves can be leveraged to guide hardware 

optimization. For instance, approximate computing, pruning, and quantization strategies in 

deep learning models reduce the precision requirements of matrix multiplication, thereby 

allowing simplified hardware implementations. By integrating such techniques, the VLSI 
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architecture can be tailored to trade off between accuracy and efficiency depending on the 

application requirements. This is particularly relevant in embedded and mobile AI systems 

where power consumption is a critical constraint. 

Recent advancements in VLSI design methodologies, such as the use of parallel systolic arrays, 

reconfigurable architectures, and multiplier-less techniques, have further strengthened the 

scope of matrix multiplication hardware accelerators. Systolic arrays, in particular, provide a 

scalable and regular structure that supports efficient mapping of deep learning algorithms, 

making them highly attractive for large neural network computations. The proposed work 

builds on these advancements by designing a pipelined and parallel array-based VLSI 

architecture specifically optimized for deep learning workloads, ensuring improvements in 

computation speed, area efficiency, and energy consumption. 

In summary, the motivation behind this work lies in addressing the growing computational 

demands of deep learning through efficient hardware design. By combining pipelining, parallel 

array processing, and VLSI design techniques, the proposed architecture aims to deliver high-

performance, low-power, and scalable matrix multiplication suitable for next-generation AI 

accelerators. 

 

2. MATRIX MULTIPLICATION 

The matrix multiplication can be represented as 

 

 

 

 

 

 

 

 

                                                        Y = Ax                                                                                       (1) 

 

Where Y and x are column vectors of size M and N respectively and A is an M×N matrix. 

Inner-Product (IP): It is defined as the scalar multiplication of two vectors 

                                           𝑦(i) =  Aix                                                                                            (2) 
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Figure 1: The Matrix Multiplication Operation 
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Where Ai is the ith row of matrix A 

So a Matrix-vector multiplication can be performed through M inner-product computation 

for M rows in A. Each Inner product computation (IPC) involves N multiply and add 

operations. Inner product computation can performed using two methods. These are: 

From figure 3.2 it is observed that N cycles are required to perform 1 IPC of size N where 

one clock cycle equals TM + TA. 

So, MN cycles are required to complete matrix-vector multiplication of size M×N with N× 1 

where M numbers of IPC are performed each requiring N cycles. 

Using 1 MAC unit 

 

 

 

 

Figure 2: IPC Using Single MAC  

 

So, M cycles are required to complete matrix-vector multiplication of size M×N with N× 1 

where M IPC are performed each requiring 1 cycle for computation. 

The conditions presented above show the extreme computing complexities. The computation 

time could be set in between M and MN cycles by suitably choosing the number of MAC 

units. 
Using N MAC units 
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Figure 3: IPC using multiple MACs 

 

3. METHODOLOGY 

Proposed Parallel-Parallel Input and Multi Output (PPI-MO) 

 
 

 

Figure 4: Proposed PPI – MO Design for n = 3 

In this design, we opted for faster operating speed by increasing the number of multipliers and 

registers performing the matrix multiplication operation.  

We have derived for parallel computation of 3 × 3 matrix-matrix multiplication and the 

structure is shown in figure 4. 

For an n×n matrix – matrix multiplication, the operation is performed using 2n number of 

multipliers, 2n  number of registers and nn −2  number of adders. The registers are used to 
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store the partial product results. Each of the 2n  number of multipliers has one input from matrix 

B and the other input is obtained from a particular element of matrix A.  

The dataflow for matrix B is in row major order and is fed simultaneously to the particular row 

of multipliers such that the thi  row of matrix B is simultaneously input to the thi  row of 

multipliers, where 1 < i < n . The elements of matrix are input to the multipliers such that, 

thij ),(  element of matrix A.  

The thji ),( multiplier, where1 < i,j < n. The resultant products from each column of multipliers 

are then added to give the elements of output matrix C. In one cycle, n elements of matrix C 

are calculated, so the entire matrix the elements of matrix C are obtained in column major order 

with n elements multiplication operation requires n cycles to complete. 

Let us consider the example of a 3×3 matrix – matrix multiplication operation, for a better 

analysis of the design (as shown in figure 1). The hardware complexities involved for this 

design are 9 multipliers, 9 registers and 6 adders. Elements from the first row of matrix B (b11 

b12 b13) are input simultaneously to the first row of multipliers (M11 M12 M13) in 3 cycles. 

Similarly, elements from other two rows of matrix B are input to the rest two rows of 

multipliers. A single element from matrix A is input to each of the multipliers such that,  thij ),(  

element of matrix A is input to the multiplier Mij, where 1 < i,j < 3. The resultant partial 

products from each column of multipliers (M1k M2k M3k where 1 < k 3) are added up in the 

adder to output the elements of matrix C. In each cycle, one column of elements from matrix 

C is obtained (C1k C2k C3k where1 < k < 3) and so the entire matrix multiplication operation is 

completed in 3 cycles. 

4. SIMULATION RESULT 

A FPGA (Field Programmable Gate Array) is an incorporated circuit comprising of an assortment of 

rationale squares, I/O cells and interconnection assets and this permits the chip to be reconfigured to 

associate the sources of info and yields (I/O) and rationale squares together from various perspectives. 

The representations of the permanent points and floating points are generally used in numerous 

applications. It is mainly applicable for designing process of the DSP applications. Also, floating point 

is demonstrated as very small to large numbers, which employed with the improved range. Every 

rationale square has customarily the capacity to do a basic rationale activity, for example, AND or XOR, 

and for the most part contains some level of memory, it be a straightforward flip-flop or a progressively 

intricate square of memory. The rationale squares have developed to be more rationale work squares 
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utilizing query tables inside the squares to switch the current capacity; to perform assignments such 

math tasks. 

For parallel in multiple out shift registers, all data bits appear on the parallel input immediately 

following the simultaneous entry of the date bits. Four-bit parallel in multiple out shift register is 

constructed by four D flip-flops. 

In fig. 5 and fig. 6 have shown the resistor transistor logic (RTL) using 3×3 PPI-MO matrix 

multiplication and output waveform of 3×3 PPI-MO matrix multiplication respectively. 

 

 
 

Figure 5: View Technology Schematic of 3×3 Matrix Multiplications using PPI-MO 
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Figure 6: View Technology Schematic of 3×3 Matrix Multiplications using PPI-MO 

 

 
Figure 7: Summary of 3×3 Matrix Multiplications using PPI-MO 
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Figure 8: View Technology Schematic of 4×4 Matrix Multiplications using PPI-MO 

 

 
Figure 9: View Technology Schematic of 4×4 Matrix Multiplications using PPI-MO 
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Figure 10: Summary of 4×4 Matrix Multiplications using PPI-MO 

 

5. CONCLUSION 

Matrix multiplication plays a vital role in deep learning and high-performance computing, 

making its efficient hardware implementation essential for real-time applications. This work 

presented VLSI architecture for pipelined and parallel array-based matrix multiplication aimed 

at optimizing performance for deep learning workloads. By combining pipelining techniques 

with parallel array structures, the proposed architecture achieves enhanced throughput, reduced 

latency, and efficient resource utilization. Compared to conventional multiplier-based designs, 

it offers significant improvements in area efficiency, power consumption, and scalability, 

which are crucial for implementing large-scale neural networks. 

The integration of deep learning-driven optimization strategies further strengthens the 

architecture’s applicability, enabling it to handle approximate computing, quantization, and 

pruning-based workloads with minimal loss in accuracy. As a result, the design is well-suited 

for AI accelerators in domains such as image processing, natural language processing, 

healthcare, and embedded intelligence. 

Overall, the proposed VLSI architecture demonstrates that pipeline and parallel array-based 

design methodologies can effectively address the challenges of speed, efficiency, and 
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scalability in matrix multiplication. Future work may focus on extending the architecture for 

reconfigurable designs, multiplier-less techniques, and energy-aware computation, thereby 

broadening its scope for next-generation edge AI and cloud-based deep learning systems. 
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