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Abstract 

This paper investigates the existence of fixed points for a class of generalized contractions in 

complete S-metric spaces. We explore several types of contraction conditions and provide an 

enriched theoretical framework supported by examples. The paper includes novel results 

extending the Banach contraction principle, altering distance function approaches, and weakly 

compatible maps to the context of S-metric spaces. Moreover, new classes of contraction 

mappings such as cyclic contractions, common fixed points for pairs of commuting mappings, 

and generalized Φ-type contractions are explored and discussed. Our findings offer a unifying 

structure that links various fixed-point theorems under a broader umbrella, enhancing their 

applicability to diverse problems in differential equations, optimization, and dynamical 

systems. The introduction of new contraction conditions helps in the relaxation of hypotheses, 

making our results applicable in settings where classical conditions fail. We also extend results 

for bounded S-metric spaces and establish common fixed-point theorems for pairs of weakly 

compatible maps using altering distance functions and comparison functions. With rich 

examples and illustrative explanations, the results in this paper contribute significantly to the 

growing literature on fixed point theory in generalized metric spaces. 

Keywords: Fixed points, S-Metric Space, Compatible Maps 

Introduction 

Fixed point theory plays a pivotal role in nonlinear analysis, providing essential tools for 

addressing problems in differential equations, dynamical systems, and optimization. The 

Banach contraction principle guarantees the existence and uniqueness of fixed points in 

complete metric spaces under certain contractive conditions. 

To handle more complex interactions, traditional metric spaces have been generalized into 

frameworks such as partial metric, G-metric, and S-metric spaces. The S-metric space, 

introduced by Sedghi et al., extends the classical metric by involving three variables, offering 

a flexible structure for modeling triadic relationships found in multi-agent systems and 

computational geometries. 

This paper explores fixed point results for generalized contractions in complete S-metric 

spaces. By employing altering distance and comparison functions, we establish new fixed-point 

theorems under relaxed conditions. We also consider specific classes of mappings—including 

cyclic, commuting, and weakly compatible maps—broadening the applicability of fixed-point 

theory in generalized metric settings. 
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 Definitions:  

1.Metric Space: 

Let X be a non-empty set. A metric on X is a real function 𝒹λ : X x X → R, which satisfies the 

following axioms:-  

(i)  𝒹λ(x, y) ≥ 0 for all x, y ϵ X 

(ii)  𝒹λ(x, y) = 0,  if and only if x = y 

(iii) 𝒹λ(x, y) = 𝒹λ(y , x)  for all x, y ϵ X,  

(iv)  𝒹λ(x, z) ≤ 𝒹λ(x, y) + 𝒹λ( y, z) for all x, y, z  ϵ X. 

The ordered pair (X, 𝒹λ) is called a metric space and 𝒹λ(x, y) is called the distance between x 

and y. The elements of X are called its points. 

 2. Contraction mapping:                                                                                   Let Let (X, 𝒹λ) 

be a metric space and a mapping 𝒹λ:  X → X is said to be contraction mapping if there exist a 

real number  𝜇 with 0 ≼ 𝜇 ≺ 1 s.t. 𝒹λ(𝜑(x) , 𝜑(y) ) ≼ 𝜇 𝒹λ(x, y)   for all x, y 𝜖 X and x ≠y, 

Thus, in contraction on X, the distance between the images of any two points is less than the 

distance between the points. 

3. Compatible mappings:                                                                    Let  

Let (X, 𝒹λ) be a metric space. The mappings ℱ and 𝒽 where ℱ : X3  → X and 𝒽 : X → X are 

said to be compatible  if  

 lim
n→∞

dλ(𝒽(ℱ(xn, yn, zn)),  ℱ (𝒽(xn), 𝒽(yn), 𝒽(zn)))  = 0 

lim
n→∞

dλ(𝒽(ℱ(yn, xn, yn)),  ℱ (𝒽(yn), 𝒽(xn), 𝒽(yn)))  = 0 

 lim
n→∞

dλ(𝒽(ℱ(zn, yn, xn)),  ℱ (𝒽(zn), 𝒽(yn), 𝒽(xn)))  = 0  

Whenever {xn}, {yn} and {zn}  are sequences  in X such that  

 lim
n→∞

 ℱ(xn, yn, zn) =  lim
n→∞

 𝒽(xn) = x 

lim
n−→∞

 ℱ(yn, xn, yn) =  lim
n→∞

 𝒽(yn) = y and  

 lim
n→∞

 ℱ(zn, yn, xn) =  lim
n→∞

 𝒽(zn) = z for some  x, y, z 𝜖 X. 

4. S-metric space: 

Let X be a non-empty set. An S – metric on X is a function S : X3 → [ 0, ∞) that satisfies the 

following conditions for all x, y, z, a ∈ X. 

(i)  S(x, y, z ) = 0 if and only if x = y = z.  

(ii)  S(x, y, z) ≤ S(x, x, a) +S(y, y, a) + S(z, z, a).  

The pair (X, S) is called an S – metric space. 

5. Complete s-metric space: 

  Let (X, S) be an S-metric space. 

(1)  A sequence {xn} ϲ X converges to  x ∈ X if S(xn, xn, x) → 0 as n → ∞. That is, for   

  each ϵ >0, there exists n0 ∈ ℕ such that for all n≥ n0. We  have, S(xn, xn, x)< ϵ. We   

  write xn → x for brevity. 

(2)   A sequence {xn} ϲ X converges to  x is a Cauchy sequence  if S(xn, xn, xm) →0 as      

  n,m → ∞. That is for each  ϵ >0, there exists n0 ∈ ℕ such that for all n, m ≥ n0 we    

  have  S(xn, xn, xm)< ϵ.  
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 The S-metric  space (X, S) is complete if every Cauchy sequence is a convergent                                

 sequence.  

6. Compatible: 

Let  (𝒥 , S)   be an S-metric space. A pair {l, k} is said to be compatible if and only if  

lim
n→∞

S(lku, lku, lku)  = 0, whenever {un} is a sequence in 𝒥  such that 

 lim
n→∞

lu = lim
n→∞

ku = r for some r ∈  𝒥.  

 Let (X, S) be an S-metric space. 

(i)  A sequence {xn} ϲ X converges to x ∈ X if S(xn, xn, x) → 0 as n →∞. That is, for     

 each ε >0, there exists n0 ∈ ℕ such that for all n ≥ n0 we have S(xn, xn, x) < ε. We write for 

xn  → x. 

(ii)  A sequence {xn} ϲ X is a Cauchy sequence  if S(xn, xn,  xm) → 0 as n, m →  ∞.   

       That is, for each  ε >0, there exists n0 ∈ ℕ such that for all n, m  ≥ n0 we have  

       S(xn, xn, xm) < ε. 

 The S-metric space (X, S) is complete if every Cauchy sequence is convergent. 

Main Results: 

Theorem 1 

Suppose that f, g, R and T are self-map of a complete S-metric space (X, S), with f(X) ⊆ T(X), 

g(X) ⊆ R(X) and that the pairs {f, R} and {g, T} are compatible.  

If S(fx, fy, fz) ≤ q max {S(Rx, Ry, Tz), S(fx, fx, Rx), S(gz, gz, Tz), S(fy, fy, gz)}, for each x, 

y, z ϵ X, with 0 <  q < 1. Then f, g, R, and T have a unique common fixed point in X if R and 

T are continuous.  

Proof: Let x0 ϵ X. Since f(X) ⊆ T(X), there exists x1 ϵ X such that fx0 = Tx1, and also as gx1 ϵ 

R(X), we choose x2 ϵ X such that gx1 = Rx2. In general, x2n+1 ϵ X is chosen such that fx2n = 

Tx2n+1 and x2n+2 ϵ X such that gx2n+1 = Rx2n+2, we obtain a sequence {yn} in X such that  y2n = 

fx2n = Tx2n+1, y2n+1 = gx2n+1 = Rx2n+2, n ≥ 0. 

Now we show that {yn} is a Cauchy sequence. For this we have   

S (y2n, y2n, y2n+1) = S (fx2n, fx2n, gx2n+1)       

                 ≤ q max {S(Rx2n, Rx2n, Tx2n+1), S(fx2n, fx2n, Rx2n),   

                        S(gx2n+1, gx2n+1, Tx2n+1), S(fx2n, fx2n, gx2n+1)}         

                 = q max {S(y2n-1, y2n-1, y2n), S(y2n, y2n, y2n-1), S(y2n+1, y2n+1, y2n),   

                             S(y2n, y2n, y2n+1)} 

        = q max {S(y2n-1, y2n-1, y2n), S(y2n, y2n, y2n+1)} 

Now, if S(y2n, y2n, y2n+1) > S(y2n-1, y2n-1, y2n), then by above inequality we have         S(y2n, y2n, 

y2n+1) < q S(y2n, y2n, y2n+1), which is a contradiction.                                          

Hence, S(y2n, y2n, y2n+1) ≤ S(y2n-1, y2n-1, y2n), therefore by above inequality we get      S(y2n, y2n, 

y2n+1) ≤ q S(y2n-1, y2n-1, y2n).                                                          (1.1) 

By similar arguments, we have                      S(y2n-1, 

y2n-1, y2n) = S(y2n, y2n, y2n-1) = S(fx2n, fx2n, gx2n-1)                         

≤ q max { S(Rx2n, Rx2n, Tx2n-1), S(fx2n, fx2n, Rx2n),                                       

S(gx2n-1, gx2n-1, Tx2n-1), S(fx2n, fx2n, gx2n-1)}            
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                               = q max {S(y2n-1, y2n-1, y2n-2), S(y2n, y2n, y2n-1),     

                                  S(y2n-1, y2n-1, y2n-2), S(y2n, y2n, y2n-1)}   

                    = q max { S(y2n-2, y2n-2, y2n-1), S(y2n, y2n, y2n-1)} 

Now, if S(y2n, y2n, y2n-1) > S(y2n-2, y2n-2, y2n-1), then by above inequality, 

we have S(y2n, y2n, y2n-1) < q S(y2n, y2n, y2n-1),   which is a contradiction.              

Hence, S(y2n-1, y2n-1, y2n) ≤ S(y2n-2, y2n-2, y2n-1), therefore by above inequality, we get-   

S(y2n-1, y2n-1, y2n) ≤ q S(y2n-2, y2n-2, y2n-1).                                  (1.2) 

Now, from (1.2) and (1.3) we have S(yn, yn, yn-1) ≤ S(yn-1, yn-1, yn-2),  n ≥ 2 ,  0 < q < 1.  

Hence, for n ≥ 2 it follows that S(yn, yn, yn-1) ≤ . . . ≤ qn-1 S(y1, y1, y0)                   (1.3)  

By the triangle inequality in S-metric space, for n >m we have                 

S(yn, yn, ym)≤ 2S(ym, ym, ym+1) + 2S(ym+1, ym+1, ym+2)+ . . .+ S(yn-1, yn-1, yn)               

                     < 2S(ym, ym, ym+1)+ 2S(ym+1, ym+1, ym+2)+ . . .+ S(yn-1, yn-1, yn). 

Hence, from (1.4) and 0<q< 1 we have    

S(yn, yn, ym) ≤ 2(qm + qm+1 + . . . + qn-1) S(y1, y1, y0)                    

                      ≤ 2qm [1 + q + q2 + . . . ] S(y1, y1, y0)                     

                      ≤ 2 
𝑞𝑚

1−𝑞
 S(y1, y1, y0) → 0,      as m →∞.  

It follows that {yn} is a Cauchy sequence. Since X is a complete S-metric space,  

there is some y in X such that       

 lim
𝑛→∞

𝑓𝑥2𝑛 = lim
𝑛→∞

𝑇𝑥2𝑛+1= lim
𝑛→∞

𝑔𝑥2𝑛+1= lim
𝑛→∞

𝑅𝑥2𝑛+2 = y. 

We show that y is a common fixed point of f, g, R, T. Since R is continuous it follows that  

lim
𝑛→∞

𝑅2𝑥2𝑛+2 = Ry ,  lim
𝑛→∞

𝑅𝑓𝑥2𝑛 = Ry.                   

and since f and R are compatible, lim
𝑛→∞

𝑆(𝑓𝑅𝑥2𝑛, 𝑓𝑅𝑥2𝑛, 𝑅𝑓𝑥2𝑛) = 0. 

So, by the Lemma   lim
𝑛→∞

𝑓𝑅𝑥2𝑛 = Ry.                

Putting x = y= Rx2n and z = x2n+1 in condition (1.1), we obtain 

S(𝑓𝑅𝑥2𝑛, 𝑓𝑅𝑥2𝑛, 𝑔𝑥2𝑛+1) ≤ q max { S (R2x2n, R
2x2n, Tx2n+1), S( 𝑓𝑅𝑥2𝑛, 𝑓𝑅𝑥2𝑛, 𝑅2𝑥2𝑛),    

                          S (g𝑥2𝑛+1, 𝑔𝑥2𝑛+1, 𝑇𝑥2𝑛+1),( 𝑓𝑅𝑥2𝑛, 𝑓𝑅𝑥2𝑛, 𝑔𝑥2𝑛+1)}                 (1.4)   

Now, by taking the upper limit when n →∞ in (1.5), we get-       

S(Ry, Ry, y) =  lim
𝑛→∞

S( 𝑓𝑅𝑥2𝑛, 𝑓𝑅𝑥2𝑛, 𝑔𝑥2𝑛+1)                    

                      ≤ q max { lim
𝑛→∞

S (R2x2n, R
2x2n, Tx2n+1), lim

𝑛→∞
 S( 𝑓𝑅𝑥2𝑛, 𝑓𝑅𝑥2𝑛, 𝑅2𝑥2𝑛), 

   lim
𝑛→∞

 S(g𝑥2𝑛+1, 𝑔𝑥2𝑛+1, 𝑇𝑥2𝑛+1), lim
𝑛→∞

S( 𝑓𝑅𝑥2𝑛, 𝑓𝑅𝑥2𝑛, 𝑔𝑥2𝑛+1)} 

           ≤q max {S(Ry, Ry, y), 0, 0, S(Ry, Ry, y)}                 

                      = q S (Ry, Ry, y).                   

Consequently, S (Ry, Ry, y) ≤ q S(Ry, Ry, y), as 0 < q < 1  it follows that Ry = y. 

In a similar way, Since T is continuous, we obtain that          

lim
𝑛→∞

  T2x2n+1 = Ty, lim
𝑛→∞

Tgx2n+1 = Ty. 

Since g and T are compatible, lim
𝑛→∞

S(gTx2n+1, gTx2n+1, Tgx2n+1) = 0. 
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 So, by Lemma  lim
𝑛→∞

gTx2n+1 = Ty.          

Putting x = y = x2n  and z = Tx2n+1 in condition (1.1), we obtain      

S(fx2n, fx2n, gTx2n+1)  ≤ q max {S(Rx2n, Rx2n, T
2x2n+1), S( 𝑓𝑥2𝑛, 𝑓𝑥2𝑛, 𝑅𝑥2𝑛),  

   S(g𝑇𝑥2𝑛+1,𝑔𝑇𝑥2𝑛+1, 𝑇2𝑥2𝑛+1),S(𝑓𝑥2𝑛,𝑓𝑥2𝑛, 𝑔𝑇𝑥2𝑛+1)}      (1.5) 

Similarly, by taking the upper limit when n → ∞ in (1.6), we obtain     

S(y, y, Ty) = lim
𝑛→∞

S(fx2n , fx2n , gTx2n+1 )                 

                   ≤ q max{S(y, y, Ty), 0, 0, S(y, y, Ty)} 

that is, again it follows that Ty = y.  

Also, we can apply condition (1.1) to obtain  

S(fy, fy, gx2n+1 ) ≤ q max {S(Ry, Ry, Tx2n+1 ), S(fy, fy, Ry),  S(gx2n+1,gx2n+1,Tx2n+1),  

                              S(fy, fy, gx2n+1 )}                           (1.6)      

And by taking the upper limit when  n → ∞ in (1.6), as Ry = Ty= y, we have   

S(fy, fy, y ) ≤ q max { S(Ry, Ry, y ), S(fy, fy, y),  S(y, y, y), S(fy, fy, y )}               

                     = q S(fy, fy, y). 

Since, 0 < q < 1, it follows that S(fy, fy, y) = 0 and fy = y.      

Finally, by using the condition (1.1) and as, Ry = Ty= fy = y, we obtain    

S(y, y, gy) = S(fy, fy, gy)                       

                    ≤ q max {S(Ry, Ry, Ty), S(fy, fy, Ry), S(gy, gy, Ty), S(fy, fy, gy)}  

          = q S(y, y, gy),  

Which implies that S(y, y, gy) = 0 and gy = y.       

Thus, we proved that Ry = Ty = fy = gy = y.  

If there exists another common fixed point x in X of all f, g, R, T, then    

S(x, x, y) = S (fx, fx, gy)               

                ≤ q max {S(Rx, Rx, Ty), S(fx, fx, Rx), S(gy, gy, Ty), S(fx, fx, gy)}          

                = q max {S(x, x, y), S(x, x, x), S(y, y, y), S(x, x, y)}           

                = q S(x, x, y),  

Which implies that S(x, x, y) = 0 and x = y. thus y is a unique common fixed point of f, g, R 

and T. The proof of the theorem is completed. 

Example-1 

 Let  X = [0, 1] be endowed with S-metric S(x, y, z) = |𝑥 − 𝑧| + |𝑦 − 𝑧|. Define f, g, R, and T 

on X by  f(x) = (
𝑥

2
)

8

, g(x) = (
𝑥

2
)

4

,   R(x) = (
𝑥

2
)

2

 , T(x) = (
𝑥

2
).  

Obviously, f(X) ⊆ T(X) and g(X) ⊆ R(X). Furthermore, the pairs {f, R}, and {g, T} are 

compatible mappings.Also for each x, y, z ∈ X, we have 

S(fx, fy, gz) = |𝑓𝑥 − 𝑔𝑧| + |𝑓𝑦 − 𝑔𝑧|                      

                  = |(
𝑥

2
)

8

− (
𝑧

2
)

4

| +    |(
𝑦

2
)

8

− (
𝑧

2
)

4

|                      

                = |(
𝑥

2
)

4

− (
𝑧

2
)

2

| |(
𝑥

2
)

4

+ (
𝑧

2
)

2

| + |(
𝑦

2
)

4

− (
𝑧

2
)

2

| |(
𝑦

2
)

4

+ (
𝑧

2
)

2

|               

                 ≤ 
5

16
 |(

𝑥

2
)

2

− (
𝑧

2
)| |(

𝑥

2
)

2

+ (
𝑧

2
)| + 

5

16
 |(

𝑦

2
)

2

− (
𝑧

2
)| |(

𝑦

2
)

2

+ (
𝑧

2
)|           
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                   ≤ 
15

64
 |𝑅𝑥 − 𝑇𝑧| + 

15

64
 |𝑅𝑦 − 𝑇𝑧|  =  

15

64
 S(Rx, Ry, Tz)                

                  ≤ 
15

64
 max{S(Rx, Ry, Tz), S(fx, fx, Rx), S(gz, gz, Tz), S(fy, fy, gz). 

Where  
15

64
 ≤ q <1. Thus f, g, R and T satisfy the conditions given in Theorem and 0 is the unique 

common fixed point of f, g, R and T. 

Corollary 1 

Let (X, S) be a complete S-metric space and let f, g : X → X be two mappings such that S(fx, 

fy, gz) ≤ q max {S(x, y, z), S(fx, fx, x), S(gz, gz, z), S(fy, fy, gz)},  for all x, y, z ϵ X, with 0< 

q< 1. Then there exists a unique point y ϵ X such that fy = gy= y. 

Proof:  If we take R and T as identity maps on X, then Theorem (1) follows that f and g have 

a unique common fixed point. 

Theorem 2 

Let {f, R} and {g, T} be compatible self-mappings on a complete S-metric space (X, S) and 

for all x, y, z ϵ X, satisfying                  

S(fx, fy, gz) ≤ a1S(Rx, Ry, Tz) + a2S(fx, fx, Tz) + a3S(Rx, Ry, gz)       

                            + a4S(fy, fy, Tz) + a5S(gz, gz, Tz)                   (2.1)  

Where ai ≥ 0 (i = 1,2,3,4,5 ) are real constants with a1 +3a2 +3a3 +3a4 +a5 < 1.  

If f(X) ⊆ T(X) and g(X) and T are continuous, then all f, g, R and T have a unique common 

fixed point.   

Proof – Let x0 in X. Since f(X) ⊆ T(X), let x1 ϵ X be such that Tx1 = fx0, and also, as gx1 ϵ 

R(x), let x2 ϵ X be such that Rx2 = gx1. 

In general x2n+1 ϵ X is chosen such that Tx2n+1 = fx2n and x2n+2 ϵ X such that Rx2n+2 = gx2n+1;  n 

= 0, 1, 2, . . .  

 Denote  y2n = Tx2n+1 = fx2n ,               

              y2n+1 = Rx2n+2 = gx2n+1 ,  n ≥ 0. 

Now, show that {yn} is a Cauchy sequence. For this we have 

 S(y2n, y2n, y2n+1) = S(fx2n, fx2n, gx2n+1)             

                            ≤ a1S(Rx2n,Rx2n,Tx2n+1)+a2S(fx2n,fx2n,Tx2n+1)+a3S(Rx2n,Rx2n,gx2n+1) 

                 + a4 S(fx2n, fx2n, Tx2n+1) +a5 S(gx2n+1, gx2n+1, Tx2n+1)  

                  = a1S(y2n-1,y2n-1,y2n)+a2S(y2n,y2n,y2n)+a3S(y2n-1,y2n-1,y2n+1)  

                             + a4 S(y2n, y2n, y2n) +a5 S(y2n+1, y2n+1, y2n).    

                   ≤ a1S(y2n-1,y2n-1,y2n)+ a3[2S(y2n-1,y2n-1,y2n) + S(y2n+1, y2n+1, y2n)]  

                              +a5 S(y2n, y2n, y2n+1).  

Hence, S(y2n, y2n, y2n+1) ≤ a1S(y2n-1,y2n-1,y2n) +2a3S(y2n-1,y2n-1,y2n)    

                       +(a3 +a5)S(y2n, y2n, y2n+1)                            (2.2) 

Now, we prove that S(y2n, y2n, y2n+1) ≤  S(y2n-1,y2n-1,y2n), for each n ϵ ℕ.   

If S(y2n-1,y2n-1,y2n) < S(y2n, y2n, y2n+1) for some n ϵ ℕ, then we have-    

S(y2n, y2n, y2n+1) < a1S(y2n, y2n, y2n+1) + 2a3S(y2n, y2n, y2n+1) + (a3+a5) S(y2n, y2n, y2n+1) 

    =  (a1 +3a3 + a5) S(y2n, y2n, y2n+1)               

                           <  S(y2n, y2n, y2n+1)        
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which is contradiction. So, we have S(y2n, y2n, y2n+1) ≤ S(y2n-1, y2n-1 , y2n), for each n ϵ ℕ and 

we get  S(y2n, y2n, y2n+1) ≤ (a1 +3a3 + a5) S(y2n-1, y2n-1 , y2n)                                    (2.3)  

Also, we have  

S(y2n-1, y2n-1 , y2n) = S(y2n, y2n , y2n-1)                 

                              = S(fx2n, fx2n , gx2n-1)           

                              ≤ a1S(Rx2n, Rx2n, Tx2n-1)+a2S(fx2n, fx2n, Tx2n-1)+a3S(Rx2n, Rx2n , gx2n-1)    

                     + a4S(fx2n, fx2n , Tx2n-1) + a5S(gx2n-1, gx2n-1 , Tx2n-1)  

                   = a1S(y2n-1, y2n-1 , y2n-2) + a2S(y2n, y2n , y2n-2) + a3S(y2n-1, y2n-1 , y2n-1) 

                       + a4S(y2n, y2n , y2n-2) + a5S(y2n-1, y2n-1 , y2n-2)         

         ≤ a1S(y2n-1, y2n-1 , y2n-2) + (2a2 + 2a4)S(y2n-1, y2n-1 , y2n) +   

                                  (a2 + a4)S(y2n-1, y2n-1 , y2n-2) + a5S(y2n-1, y2n-1 , y2n-2)  

Hence,  S(y2n, y2n , y2n-1) ≤ a1S(y2n-1, y2n-1 , y2n-2) + (2a2+ 2a4) S(y2n, y2n , y2n-1)   

                         + (a2 +a4 + a5)S(y2n-1, y2n-1 , y2n-2)               (2.4) 

Similarly, if S(y2n-1, y2n-1 , y2n-2) < S(y2n, y2n , y2n-1) for some n ϵ ℕ then from (2.4) we obtain 

 S(y2n, y2n , y2n-1) ≤ (a1 + 3a2 + 3a4 + a5) S(y2n, y2n , y2n-1)     

                 < S(y2n, y2n , y2n-1)       

which is contradiction.  

So, we have S(y2n, y2n , y2n-1) ≤ S(y2n-1, y2n-1 , y2n-2), for each n ϵ ℕ then from (2.4) we get  

S(y2n,y2n,y2n-1) ≤ (a1 + 3a2 + 3a4 + a5) S(y2n-1, y2n-1 , y2n-2)                                     (2.5)  

Now, from (2.3) and (2.5) we have,       

S (yn, yn , yn-1)  < λ S(yn-1, yn-1 , yn-2),  n ≥ 2,     

Where λ = min{a1 + 3a3 + a5, a1 + 3a2 + 3a4 + a5). We know that λ ϵ (0, 1).    

Hence, for n ≥ 2 it follows that               

 S(yn, yn , yn-1) ≤  . . .  ≤ λn-1 S(y1, y1 , y0).                    (2.6)    

by the triangle inequality in S-metric space, for  n > m we have     

S(yn, yn , ym) ≤ 2S(ym, ym , ym+1) + 2S(ym+1, ym+1 , ym+2) + . . . +2S(yn-1, yn-1 , yn)   

Hence, from (2.6) and as λ < 1, we have        

S(yn, yn , ym) ≤ 2(λm + λm+1 + . . . + λn-1) S(y1, y1, y0)                    

                      ≤ 2λm [1+ λ+ (λ)2 + . . . ] S(y1, y1, y0)                    

                      ≤ 
2𝜆𝑚

1−𝜆
 S(y1, y1, y0)     =  

2𝜆𝑚

1−𝜆
 S(y1, y1, y0) → 0 as m → ∞.  

It follows that, {yn} is a Cauchy sequence. Let y ϵ X be such that    

 lim
𝑛→∞

fx2n = lim
𝑛→∞

  Tx2n+1 = lim
𝑛→∞

gx2n+1 = lim
𝑛→∞

Rx2n+2  = y  

Since, R is continuous it follows that  lim
𝑛→∞

R2x2n+2 = Ry,   lim
𝑛→∞

Rfx2n = Ry. 

And since, f and R are compatible, lim
𝑛→∞

S(fRx2n, fRx2n, Rfx2n)=0. 

So, by Lemma, lim
𝑛→∞

fRx2n = Ry. From, (1.8) it follows that    

S(fRx2n, fRx2n, gx2n+1) ≤ a1S(R2x2n, R
2x2n, Tx2n+1) + a2S(fRx2n,fRx2n,Tx2n+1)  

                                    + a3S(R2x2n,R
2x2n, gx2n+1)+ a4S(fRx2n, fRx2n, Tx2n+1)   

                                      +a5 S(gx2n+1, gx2n+1, Tx2n+1)  

Taking the upper limit as n → ∞, we get        

S(Ry, Ry, y) ≤ a1S(Ry, Ry, y) +a2S(Ry, Ry, y) + a3S(Ry, Ry, y) +a4S(Ry, Ry, y) +  
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                               a5 S(y, y, y)                  

                     ≤ a1 S(Ry, Ry, y) +a2 S(Ry, Ry, y) + a3S(Ry, Ry, y) + a4S(Ry, Ry, y)       

                     = (a1 + a2 + a3 + a4)S(Ry, Ry, y)                  

                     ≤ (a1 + a2 + a3 + a4 + a5 )S(Ry, Ry, y) 

Therefore, S(Ry, Ry, y) ≤(a1 + 3a2 + 3a3 + 3a4 + a5 )S(Ry, Ry, y),  

as a1 +3a2 +3a3 +3a4 + a5 <1, we know that Ry = y.  

In a similar way, since T is continuous, we obtain that     lim
𝑛→∞

T2x2n+1 

= Ty,     

 lim
𝑛→∞

Tgx2n+1 = Ty.  

Since g and T are compatible, lim
𝑛→∞

S(gTx2n+1, gTx2n+1, Tgx2n+1) = 0. 

So, by Lemma,     lim
𝑛→∞

gTx2n+1  = Ty. 

From (1.8) it follows that  

S(fx2n, fx2n, gT2n+1) ≤ a1S(Rx2n, Rx2n, T
2x2n+1) + a2S(fx2n,fx2n,T

2x2n+1)    

                                    + a3S(Rx2n,Rx2n, gTx2n+1)+ a4S(fx2n, fx2n, T
2x2n+1)   

                                                         +a5 S(gTx2n+1, gTx2n+1, T
2 x2n+1)  

Taking the upper limit as n → ∞, we get        

S(y, y, Ty) ≤ a1S(y, y, Ty) + a2S(y, y, Ty)+ a3S(y, y, Ty) + a4S(y, y, Ty)+ a5S(Ty, Ty, Ty) 

        = (a1 + a2 + a3 + a4 )S(Ty , Ty, y)           

                   ≤ (a1 + 3a2 + 3a3 + 3a4 + a5 )S(y, y, Ty),     

that is , S(y, y, Ty) ≤ (a1 + 3a2 + 3a3 + 3a4 + a5 )S(y, y, Ty) 

Therefore, by   a1 + 3a2 + 3a3 + 3a4 + a5 < 1, we know that Ty = y. 

Again from (1.8), it follows that         

S(fy, fy, gx2n+1) ≤ a1S(Ry, Ry, Tx2n+1) + a2S(fy, fy, Tx2n+1) 

  + a3S(Ry, Ry, gx2n+1) + a4S(fy, fy, Tx2n+1)+ a5S(gx2n+1, gx2n+1, Tx2n+1) 

And by taking the upper limit as n →∞, as Ry= y, Ty = y, we get  

S(fy, fy, y) ≤ a1S(y, y, y) + a2S(fy, fy, y)+ a3S(y, y, y) + a4S(fy, fy, y)+ a5S(y, y, y)          

                   ≤ (a2 + a4) S(fy, fy, y)  

Therefore, S(fy, fy, y) ≤ (a1 + 3a2 + 3a3 + 3a4 + a5 )S(fy, fy, y) and  

by a1 + 3a2 + 3a3 + 3a4 + a5 <1, we know that fy =y.  

Again from (1.8), we have S(fy , fy, gy)= 0; hence fy = gy. Thus we prove that fy = gy= Ry = 

Ty= y, if there exists another common fixed point x in X of all f, g, R, T, then  

S(x, x, y) = S(fx, fx, gy)                 

                ≤ a1S(Rx, Rx, Ty) + a2S(fx, fx, Ty)+ a3S(Rx, Rx, gy)+ a4S(fx, fx, Ty) +  

                                                                                                                a5S(gy, gy, Ty) 

                = ( a1 + a2 + a3 + a4 )S(x, x, y)  ≤  ( a1 + 3a2 + 3a3 + 3a4 + a5)S(x, x, y) 

From which it follows,  S(x, x, y) ≤ (a1 + 3a2 + 3a3 + 3a4 + a5)S(x, x, y). 

Since, a1 + 3a2 + 3a3 + 3a4 + a5 < 1, it follows that S(x, x, y) = 0, i.e., x = y. Therefore, y is a 

unique common fixed point of all f, g, R, T. The proof of the Theorem is completed. 
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